<inline-formula>
Formula, Inline
Mathematical equation, expression, or formula that is to be displayed inline. The
mathematics itself can be expressed as ASCII characters, as a graphic, or using TeX,
LaTeX, or MathML mathematics expressions.
Remarks
Some print-oriented tag sets use a specific element to indicate “go into math mode or math font here”. While that was not the intended usage of this element, in nearly all cases the text inside such math-changes is a mathematical expression. It would not be incorrect to use this element to mark such material; however, some users may find this tagging undesirable.
Attributes
Content Model
<!ELEMENT inline-formula %inline-formula-model; >
Expanded Content Model
(#PCDATA | bold | fixed-case | italic | monospace | overline | roman | sans-serif | sc | strike | underline | ruby | alternatives | inline-graphic | private-char | chem-struct | inline-formula | tex-math | mml:math | named-content | styled-content | sub | sup)*
Description
Any combination of:
- Text, numbers, or special characters
- Emphasis Elements
- <alternatives> Alternatives For Processing
- Inline Display Elements
- <chem-struct> Chemical Structure (Display)
- <inline-formula> Formula, Inline
- Math Elements
- <named-content> Named Special (Subject) Content
- <styled-content> Styled Special (Subject) Content
- Baseline Change Elements
This element may be contained in:
<addr-line>, <alt-title>, <article-title>, <attrib>, <award-id>, <bold>, <collab>, <comment>, <compound-kwd-part>, <compound-subject-part>, <conf-theme>, <def-head>, <disp-formula>, <element-citation>, <fixed-case>, <funding-source>, <inline-formula>, <italic>, <label>, <license-p>, <meta-value>, <mixed-citation>, <monospace>, <named-content>, <overline>, <p>, <product>, <roman>, <sans-serif>, <sc>, <strike>, <styled-content>, <sub>, <subject>, <subtitle>, <sup>, <supplement>, <td>, <term>, <term-head>, <th>, <title>, <trans-subtitle>, <trans-title>, <underline>, <verse-line>
Example 1
As part of an abstract paragraph:
...
<abstract>
<p>This is the third and last part of the volume devoted to solubility data of rare
earth metal chlorides in water and in ternary and quaternary aqueous systems.
Compilations of all available experimental data for each rare earth metal chloride
are introduced with a corresponding critical evaluation. Every such evaluation
contains a tabulated collection of all solubility results in water, a scheme of the
water-rich part of the equilibrium
<inline-formula>
<mml:math display="inline" overflow="scroll"
xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi mathvariant="normal">Ln</mml:mi>
<mml:msub>
<mml:mi mathvariant="normal">Cl</mml:mi>
<mml:mn>3</mml:mn>
</mml:msub>
<mml:mo>–</mml:mo>
<mml:msub>
<mml:mi mathvariant="normal">H</mml:mi>
<mml:mn>2</mml:mn>
</mml:msub>
<mml:mi mathvariant="normal">O</mml:mi>
</mml:mrow>
</mml:math>
</inline-formula> phase diagram, solubility equation(s), a selection of suggested
solubility data, and a brief discussion of the multicomponent systems. Because
the ternary and quaternary systems were almost never studied more than once,
no critical evaluations or systematic comparisons of such data were possible.
Simple chlorides (no complexes) of Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu are treated
as the input substances. The literature (including a thorough coverage of papers
in Chinese and Russian) has been covered through the middle of 2008.</p>
</abstract>
...
Example 2
As part of a <note>:
...
<ref id="c46">
<label>46.</label>
<note>
<p>The discretisation consists of 30 elements in the <italic>x</italic>-direction
and 30 elements in the <italic>y</italic>-direction. This corresponds to 7442
DOF. The quadratic eigenvalue problems along the <inline-formula>
<mml:math display="inline" overflow="scroll"
xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi mathvariant="normal">Γ</mml:mi>
<mml:mo>−</mml:mo>
<mml:mi>X</mml:mi>
</mml:mrow>
</mml:math>
</inline-formula> and ... the memory usage of 2.5 GB.</p>
</note>
</ref>
...
Example 3
Several closely-related inline formulae:
... <p>... (e) For any neighboring cells, <italic>j</italic> and <italic>k</italic>, <inline-formula>σ<sub>je</sub>=σ<sub>ke</sub> </inline-formula>, <inline-formula>σ<sub>ji</sub>=σ<sub>ki</sub> </inline-formula> and <inline-formula>φ<sub>je</sub>=φ<sub>ke</sub> </inline-formula>, φ<sub>e</sub> is the potential in intercellular space. For convenience, we present the algorithm for the 2-D model here; the 3-D case is similar ...</p> ...